博客
关于我
MATLAB做离散傅里叶变换DFT
阅读量:142 次
发布时间:2019-02-28

本文共 893 字,大约阅读时间需要 2 分钟。

DFT分析与实现

本文将详细介绍DFT(离散傅里叶变换)在信号处理中的应用,通过具体案例展示如何实现DFT算法,并分析结果。

主函数

实现步骤

  • 初始化参数

    • N:点数,设为16;
    • n:自变量,初始化为0。
  • 信号定义

    • x1n: 定义为 exp(j*pi*n/8),表示复指数序列。
    • x2n: 定义为 cos(pi*n/8),表示余弦序列。
    • x3n: 定义为 sin(pi*n/8),表示正弦序列。
  • DFT计算

    • 使用自定义子函数 dft 进行傅里叶变换。
    • WN = exp(-j*2*pi/N):生成单位复数根。
    • nk = n'*k:计算复数乘积。
    • WNnk = WN.^nk:计算单位复数的幂次。
    • Xk = xn * WNnk:实现DFT变换。
  • 可视化

    • 使用 stem 绘制信号序列及DFT结果图。
    • subplot 创建多图绘制,分别展示原信号与DFT频谱。
  • 代码实现

    function Xk=dft(xn,N)    n = [0:1:N-1];    k = [0:1:N-1];    WN = exp(-j*2*pi/N);    nk = n'*k;    WNnk = WN.^nk;    Xk = xn * WNnk;end

    子函数

    ###傅里叶变换实现

    • 该函数接收信号 xn 及点数 N,返回DFT结果 Xk
    • 内部通过生成单位复数根 WN,计算复数乘积 nk,进而得到DFT矩阵 WNnk
    • 最终结果 Xk 为原信号经DFT变换后的频域表示。

    结果展示

    通过上述实现,可以清晰地观察信号在时域与频域之间的变换关系。具体结果如图所示,图中展示了原信号及其DFT频谱,方便分析信号的谱能量分布。

    算法改进

    该实现采用矩阵乘法实现DFT,计算效率较高。建议在实际应用中,若需要更高性能,可以考虑使用数态优化技术或并行计算方法。

    如需进一步开发或定制需求,请联系开发者:1762016542(注:此联系方式仅用于技术交流)。


    本文通过详细的实现步骤和结果展示,介绍了DFT算法的基本原理与应用。内容结合理论与实践,旨在帮助读者理解傅里叶变换的实现过程及其在信号处理中的应用价值。

    转载地址:http://mebc.baihongyu.com/

    你可能感兴趣的文章
    mysql中的undo log、redo log 、binlog大致概要
    查看>>
    Mysql中的using
    查看>>
    MySQL中的关键字深入比较:UNION vs UNION ALL
    查看>>
    mysql中的四大运算符种类汇总20多项,用了三天三夜来整理的,还不赶快收藏
    查看>>
    mysql中的字段如何选择合适的数据类型呢?
    查看>>
    MySQL中的字符集陷阱:为何避免使用UTF-8
    查看>>
    mysql中的数据导入与导出
    查看>>
    MySQL中的时间函数
    查看>>
    mysql中的约束
    查看>>
    MySQL中的表是什么?
    查看>>
    mysql中穿件函数时候delimiter的用法
    查看>>
    Mysql中索引的分类、增删改查与存储引擎对应关系
    查看>>
    Mysql中索引的最左前缀原则图文剖析(全)
    查看>>
    MySql中给视图添加注释怎么添加_默认不支持_可以这样取巧---MySql工作笔记002
    查看>>
    Mysql中获取所有表名以及表名带时间字符串使用BetweenAnd筛选区间范围
    查看>>
    Mysql中视图的使用以及常见运算符的使用示例和优先级
    查看>>
    Mysql中触发器的使用示例
    查看>>
    Mysql中设置只允许指定ip能连接访问(可视化工具的方式)
    查看>>
    mysql中还有窗口函数?这是什么东西?
    查看>>
    mysql中间件
    查看>>